{ "id": "1904.10336", "version": "v1", "published": "2019-04-23T14:00:52.000Z", "updated": "2019-04-23T14:00:52.000Z", "title": "On uniform definability of types over finite sets for NIP formulas", "authors": [ "Shlomo Eshel", "Itay Kaplan" ], "categories": [ "math.LO" ], "abstract": "Combining two results from machine learning theory we prove that a formula is NIP if and only if it satisfies uniform definability of types over finite sets (UDTFS). This settles a conjecture of Laskowski.", "revisions": [ { "version": "v1", "updated": "2019-04-23T14:00:52.000Z" } ], "analyses": { "subjects": [ "03C45", "03C40", "68R05" ], "keywords": [ "finite sets", "nip formulas", "satisfies uniform definability", "machine learning theory", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }