{ "id": "1904.10031", "version": "v1", "published": "2019-04-22T18:55:34.000Z", "updated": "2019-04-22T18:55:34.000Z", "title": "A combinatorial proof of the pointwise ergodic theorem for actions of amenable groups along Tempelman Følner Sequences", "authors": [ "Jonathan Boretsky", "Jenna Zomback" ], "comment": "5 pages", "categories": [ "math.DS", "math.LO" ], "abstract": "We generalize A. Tserunyan's proof of the pointwise ergodic theorem for $\\mathbb{Z}$ to give a short and combinatorial proof of the pointwise ergodic theorem for actions of amenable groups along Tempelman F{\\o}lner sequences. We do this by finding Vitali coverings with F{\\o}lner tiles in multiple scales.", "revisions": [ { "version": "v1", "updated": "2019-04-22T18:55:34.000Z" } ], "analyses": { "subjects": [ "37A30", "03E15" ], "keywords": [ "pointwise ergodic theorem", "tempelman følner sequences", "combinatorial proof", "amenable groups", "tserunyans proof" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }