{ "id": "1904.09034", "version": "v1", "published": "2019-04-18T22:36:16.000Z", "updated": "2019-04-18T22:36:16.000Z", "title": "A \"rare'' plane set with Hausdorff dimension 2", "authors": [ "Vladimir Eiderman", "Michael Larsen" ], "comment": "4 pages", "categories": [ "math.CA" ], "abstract": "We prove that for every at most countable family $\\{f_k(x)\\}$ of real functions on $[0,1)$ there is a single-valued real function $F(x)$, $x\\in[0,1)$, such that the Hausdorff dimension of the graph $\\Gamma$ of $F(x)$ equals 2, and for every $C\\in\\mathbb R$ and every $k$, the intersection of $\\Gamma$ with the graph of the function $f_k(x)+C$ consists of at most one point.", "revisions": [ { "version": "v1", "updated": "2019-04-18T22:36:16.000Z" } ], "analyses": { "subjects": [ "28A78" ], "keywords": [ "hausdorff dimension", "plane set", "single-valued real function", "intersection" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }