{ "id": "1904.08969", "version": "v1", "published": "2019-04-18T18:30:11.000Z", "updated": "2019-04-18T18:30:11.000Z", "title": "$k$-Scattered spaces", "authors": [ "Taras Banakh" ], "comment": "4 pages", "categories": [ "math.GN" ], "abstract": "A topological space $X$ is called $k$-scattered if each compact subspace of $X$ has an isolated point. We prove that (i) a \\v{C}ech-complete space is $k$-scattered if and only if it is scattered and (ii) a $K$-analytic space $X$ is $k$-scattered if and only if any metrizable continuous image of $X$ is at most countable.", "revisions": [ { "version": "v1", "updated": "2019-04-18T18:30:11.000Z" } ], "analyses": { "subjects": [ "54H05", "03E15", "03E17" ], "keywords": [ "scattered spaces", "compact subspace", "analytic space" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }