{ "id": "1904.08694", "version": "v1", "published": "2019-04-18T11:17:42.000Z", "updated": "2019-04-18T11:17:42.000Z", "title": "Integral Curvature Bounds and Bounded Diameter with Bakry--Emery Ricci Tensor", "authors": [ "Seungsu Hwang", "Sanghun Lee" ], "comment": "9 pages", "categories": [ "math.DG" ], "abstract": "For Riemannian manifolds with a smooth measure $(M, g, e^{-f}dv_{g})$, we prove a generalized Myers compactness theorem when Bakry--Emery Ricci tensor is bounded from below and $f$ is bounded.", "revisions": [ { "version": "v1", "updated": "2019-04-18T11:17:42.000Z" } ], "analyses": { "subjects": [ "53C25", "53C21" ], "keywords": [ "bakry-emery ricci tensor", "integral curvature bounds", "bounded diameter", "generalized myers compactness theorem", "riemannian manifolds" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }