{ "id": "1904.07825", "version": "v1", "published": "2019-04-16T17:04:24.000Z", "updated": "2019-04-16T17:04:24.000Z", "title": "On the size of $(K_t,\\mathcal{T}_k)$-co-critical graphs", "authors": [ "Zi-Xia Song", "Jingmei Zhang" ], "comment": "17 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "Given an integer $r\\ge1$ and graphs $G, H_1, \\ldots, H_r$, we write $G \\rightarrow ({H}_1, \\ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $i\\in\\{1, \\ldots, r\\}$. A non-complete graph $G$ is $(H_1, \\ldots, H_r)$-co-critical if $G \\nrightarrow ({H}_1, \\ldots, {H}_r)$, but $G+e\\rightarrow ({H}_1, \\ldots, {H}_r)$ for every edge $e$ in $\\overline{G}$. In this paper, motivated by Hanson and Toft's conjecture [Edge-colored saturated graphs, J Graph Theory 11(1987), 191--196], we study the minimum number of edges over all $(K_t, \\mathcal{T}_k)$-co-critical graphs on $n$ vertices, where $\\mathcal{T}_k$ denotes the family of all trees on $k$ vertices. Following Day [Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017), 201--207], we apply graph bootstrap percolation on a not necessarily $K_t$-saturated graph to prove that for all $t\\ge4 $ and $k\\ge \\max\\{6, t\\}$, there exists a constant $c(t, k)$ such that, for all $n \\ge (t-1)(k-1)+1$, if $G$ is a $(K_t, \\mathcal{T}_k)$-co-critical graph on $n$ vertices, then $$ e(G)\\ge \\left(\\frac{4t-9}{2}+\\frac{1}{2}\\left\\lceil \\frac{k}{2} \\right\\rceil\\right)n-c(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $t\\in\\{4,5\\}$ and $k\\ge6$. The method we develop in this paper may shed some light on attacking Hanson and Toft's conjecture.", "revisions": [ { "version": "v1", "updated": "2019-04-16T17:04:24.000Z" } ], "analyses": { "keywords": [ "co-critical graph", "saturated graph", "tofts conjecture", "apply graph bootstrap percolation", "minimum number" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }