{ "id": "1904.07794", "version": "v1", "published": "2019-04-16T16:26:32.000Z", "updated": "2019-04-16T16:26:32.000Z", "title": "A generalized skein relation for Khovanov homology and a categorification of the $θ$-invariant", "authors": [ "Maria Chlouveraki", "Dimos Goundaroulis", "Aristides Kontogeorgis", "Sofia Lambropoulou" ], "comment": "21 pages", "categories": [ "math.GT" ], "abstract": "The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the $\\theta$-invariant, which is itself a generalization of the Jones polynomial.", "revisions": [ { "version": "v1", "updated": "2019-04-16T16:26:32.000Z" } ], "analyses": { "subjects": [ "57M27", "57M25" ], "keywords": [ "khovanov homology", "generalized skein relation", "jones polynomial", "categorification", "richer link invariant" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }