{ "id": "1904.07784", "version": "v1", "published": "2019-04-16T16:08:04.000Z", "updated": "2019-04-16T16:08:04.000Z", "title": "The Euler-Maruyama Scheme for SDEs with Irregular Drift: Convergence Rates via Reduction to a Quadrature Problem", "authors": [ "Andreas Neuenkirch", "Michaela Szölgyenyi" ], "categories": [ "math.PR", "math.NA" ], "abstract": "We study the strong convergence order of the Euler-Maruyama scheme for scalar stochastic differential equations with additive noise and irregular drift. We provide a novel framework for the error analysis by reducing it to a weighted quadrature problem for irregular functions of Brownian motion. Assuming Sobolev-Slobodeckij-type regularity of order $\\kappa \\in (0,1)$ for the drift, our analysis of the quadrature problem yields the convergence order $\\min\\{3/4,(1+\\kappa)/2\\}-\\epsilon$ for the equidistant Euler-Maruyama scheme (for arbitrarily small $\\epsilon>0$). The cut-off of the convergence order at $\\kappa=3/4$ can be overcome by using a suitable non-equidistant discretization, which yields the strong convergence order of $(1+\\kappa)/2-\\epsilon$ for the corresponding Euler-Maruyama scheme.", "revisions": [ { "version": "v1", "updated": "2019-04-16T16:08:04.000Z" } ], "analyses": { "subjects": [ "60H10", "60H35", "65C30" ], "keywords": [ "irregular drift", "convergence rates", "strong convergence order", "scalar stochastic differential equations", "equidistant euler-maruyama scheme" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }