{ "id": "1904.07716", "version": "v1", "published": "2019-04-15T16:41:27.000Z", "updated": "2019-04-15T16:41:27.000Z", "title": "On the Hilbert scheme of linearly normal curves in $\\mathbb{P}^r$ of relatively high degree", "authors": [ "Edoardo Ballico", "Claudio Fontanari", "Changho Keem" ], "comment": "10 pages. arXiv admin note: substantial text overlap with arXiv:1903.02307", "categories": [ "math.AG" ], "abstract": "We denote by $\\mathcal{H}_{d,g,r}$ the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree $d$ and genus $g$ in $\\mathbb{P}^r$. We let $\\mathcal{H}^\\mathcal{L}_{d,g,r}$ be the union of those components of $\\mathcal{H}_{d,g,r}$ whose general element is linearly normal. In this article, we show that any non-empty $\\mathcal{H}^\\mathcal{L}_{d,g,r}$ ($d\\ge g+r-3$) is irreducible in an extensive range of the triple $(d,g,r)$ beyond the Brill-Noether range. This establishes the validity of a certain modified version of an assertion of Severi regarding the irreducibility of the Hilbert scheme $\\mathcal{H}^\\mathcal{L}_{d,g,r}$ of linearly normal curves for $g+r-3\\le d\\le g+r$, $r\\ge 5$, and $g \\ge 2r+3$ if $d=g+r-3$.", "revisions": [ { "version": "v1", "updated": "2019-04-15T16:41:27.000Z" } ], "analyses": { "subjects": [ "14C05", "14H10" ], "keywords": [ "linearly normal curves", "hilbert scheme", "relatively high degree", "general point corresponds", "smooth curves" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }