{ "id": "1904.06741", "version": "v1", "published": "2019-04-14T19:04:05.000Z", "updated": "2019-04-14T19:04:05.000Z", "title": "Connection Formulae for Asymptotics of the Fifth Painlevé Transcendent on the Imaginary Axis: I", "authors": [ "F. V. Andreev", "A. V. Kitaev" ], "comment": "71 pages, 30 figures", "categories": [ "math.CA", "math-ph", "math.MP" ], "abstract": "Leading terms of asymptotic expansions for the general complex solutions of the fifth Painlev\\'e equation as $t\\to\\imath\\infty$ are found. These asymptotics are parameterized by monodromy data of the associated linear ODE. $$ \\frac{d}{d\\lambda}Y= \\left(\\frac t2\\sigma_3 + \\frac{A_0}\\lambda+\\frac{A_1}{\\lambda-1}\\right)Y. $$ The parametrization allows one to derive connection formulas for the asymptotics. We provide numerical verification of the results. Important special cases of the connection formulas are also considered.", "revisions": [ { "version": "v1", "updated": "2019-04-14T19:04:05.000Z" } ], "analyses": { "subjects": [ "34M55", "33E17", "34M40", "34M35", "34E20" ], "keywords": [ "connection formulae", "imaginary axis", "transcendent", "general complex solutions", "fifth painleve equation" ], "note": { "typesetting": "TeX", "pages": 71, "language": "en", "license": "arXiv", "status": "editable" } } }