{ "id": "1904.04870", "version": "v1", "published": "2019-04-09T19:03:44.000Z", "updated": "2019-04-09T19:03:44.000Z", "title": "Determinants of Seidel matrices and a conjecture of Ghorbani", "authors": [ "Douglas Rizzolo" ], "categories": [ "math.CO", "math.PR" ], "abstract": "Let $G_n$ be a simple graph on $V_n=\\{v_1,\\dots, v_n\\}$. The Seidel matrix $S(G_n)$ of $G_n$ is the $n\\times n$ matrix whose $(ij)$'th entry, for $i\\neq j$ is $-1$ if $v_i\\sim v_j$ and $1$ otherwise, and whose diagonal entries are $0$. We show that the proportion of simple graphs $G_n$ such that $\\det(S(G_n))\\geq n-1$ tends to one as $n$ tends to infinity.", "revisions": [ { "version": "v1", "updated": "2019-04-09T19:03:44.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "seidel matrix", "determinants", "simple graph", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }