{ "id": "1904.04709", "version": "v1", "published": "2019-04-09T14:43:27.000Z", "updated": "2019-04-09T14:43:27.000Z", "title": "Dynamical and arithmetic degrees for random iterations of maps on projective space", "authors": [ "Wade Hindes" ], "categories": [ "math.NT", "math.DS" ], "abstract": "We show that the dynamical degree of an (i.i.d) random sequence of dominant, rational self-maps on projective space is almost surely constant. We then apply this result to height growth and height counting problems in random orbits.", "revisions": [ { "version": "v1", "updated": "2019-04-09T14:43:27.000Z" } ], "analyses": { "keywords": [ "projective space", "random iterations", "arithmetic degrees", "random sequence", "rational self-maps" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }