{ "id": "1904.04593", "version": "v1", "published": "2019-04-09T11:15:01.000Z", "updated": "2019-04-09T11:15:01.000Z", "title": "On the KPZ equation with fractional diffusion", "authors": [ "Boumediene Abdellaoui", "Ireneo Peral", "Ana Primo" ], "comment": "27 pages", "categories": [ "math.AP" ], "abstract": "\\begin{abstract} In this work we analyze the existence of solution to the fractional quasilinear problem, $$ (P) \\left\\{ \\begin{array}{rcll} u_t+(-\\Delta )^s u &=&|\\nabla u|^{\\alpha}+ f &\\inn \\Omega_T\\equiv\\Omega\\times (0,T),\\\\ u(x,t)&=&0 & \\inn(\\mathbb{R}^N\\setminus\\Omega)\\times [0,T),\\\\ u(x,0)&=&u_{0}(x) & \\inn\\Omega,\\\\ \\end{array}\\right. $$ where $\\Omega$ is a $C^{1,1}$ bounded domain in $\\mathbb{R}^N$, $N> 2s$ and $\\frac{1}{2}