{ "id": "1904.04457", "version": "v1", "published": "2019-04-09T04:03:45.000Z", "updated": "2019-04-09T04:03:45.000Z", "title": "Hausdorff dimension of the large values of Weyl sums", "authors": [ "Changhao Chen", "Igor E. Shparlinski" ], "comment": "14 pages", "categories": [ "math.CA", "math.NT" ], "abstract": "The authors have recently obtained a lower bound of the Hausdorff dimension of the sets of vectors $(x_1, \\ldots, x_d)\\in [0,1)^d$ with large Weyl sums, namely of vectors for which $$ \\left| \\sum_{n=1}^{N}\\exp(2\\pi i (x_1 n+\\ldots +x_d n^{d})) \\right| \\ge N^{\\alpha} $$ for infinitely many integers $N \\ge 1$. Here we obtain an upper bound for the Hausdorff dimension of these exceptional sets.", "revisions": [ { "version": "v1", "updated": "2019-04-09T04:03:45.000Z" } ], "analyses": { "subjects": [ "11L15", "28A78", "28A80" ], "keywords": [ "hausdorff dimension", "large values", "large weyl sums", "exceptional sets", "upper bound" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }