{ "id": "1904.02568", "version": "v1", "published": "2019-04-04T14:13:58.000Z", "updated": "2019-04-04T14:13:58.000Z", "title": "Rigidity for $p$-Laplacian type equations on compact Riemannian manifolds", "authors": [ "Yu-Zhao Wang", "Pei-Can Wei" ], "comment": "14 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "In this paper, we obtain two rigidity results for $p$-Laplacian type equations on compact Riemannian manifolds by using of the carr\\'e du champ and nonlinear flow methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.", "revisions": [ { "version": "v1", "updated": "2019-04-04T14:13:58.000Z" } ], "analyses": { "subjects": [ "35J92", "35K92", "58J35", "53C24" ], "keywords": [ "laplacian type equations", "compact riemannian manifolds", "nonlinear flow methods", "rigidity results", "interpolation inequality" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }