{ "id": "1904.01884", "version": "v1", "published": "2019-04-03T09:54:12.000Z", "updated": "2019-04-03T09:54:12.000Z", "title": "Projection of root systems", "authors": [ "Sarah Dijols" ], "categories": [ "math.RT" ], "abstract": "Let $a$ be a real euclidean vector space of finite dimension and $\\Sigma$ a root system in $a$ with a basis $\\Delta$. Let $\\Theta \\subset \\Delta$ and $M = M_{\\Theta}$ be a standard Levi of a reductive group $G$ such that $a_{\\Theta} = a_M\\slash a_G$. Let us denote $d$ the dimension of $a_{\\Theta}$, i.e the cardinal of $\\Delta - \\Theta$ and $\\Sigma_{\\Theta}$ the set of all non-trivial projections of roots in $\\Sigma$. We obtain conditions on $\\Theta$ such that $\\Sigma_{\\Theta}$ contains a root system of rank $d$.", "revisions": [ { "version": "v1", "updated": "2019-04-03T09:54:12.000Z" } ], "analyses": { "keywords": [ "root system", "real euclidean vector space", "finite dimension", "standard levi", "non-trivial projections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }