{ "id": "1904.01794", "version": "v1", "published": "2019-04-03T06:31:38.000Z", "updated": "2019-04-03T06:31:38.000Z", "title": "Subdivisions of vertex-disjoint cycles in bipartite graphs", "authors": [ "Shengning Qiao", "Bing Chen" ], "categories": [ "math.CO" ], "abstract": "Let $n\\geq 6,k\\geq 0$ be two integers. Let $H$ be a graph of order $n$ with $k$ components, each of which is an even cycle of length at least $6$ and $G$ be a bipartite graph with bipartition $(X,Y)$ such that $|X|=|Y|\\geq n/2$. In this paper, we show that if the minimum degree of $G$ is at least $n/2-k+1$, then $G$ contains a subdivision of $H$. This generalized an older result of Wang.", "revisions": [ { "version": "v1", "updated": "2019-04-03T06:31:38.000Z" } ], "analyses": { "keywords": [ "bipartite graph", "vertex-disjoint cycles", "subdivision", "minimum degree", "older result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }