{ "id": "1904.01638", "version": "v1", "published": "2019-04-02T19:38:34.000Z", "updated": "2019-04-02T19:38:34.000Z", "title": "A Strong Baseline for Domain Adaptation and Generalization in Medical Imaging", "authors": [ "Li Yao", "Jordan Prosky", "Ben Covington", "Kevin Lyman" ], "comment": "Extended abstract of a journal submission", "categories": [ "cs.CV", "cs.AI", "stat.ML" ], "abstract": "This work provides a strong baseline for the problem of multi-source multi-target domain adaptation and generalization in medical imaging. Using a diverse collection of ten chest X-ray datasets, we empirically demonstrate the benefits of training medical imaging deep learning models on varied patient populations for generalization to out-of-sample domains.", "revisions": [ { "version": "v1", "updated": "2019-04-02T19:38:34.000Z" } ], "analyses": { "keywords": [ "strong baseline", "generalization", "imaging deep learning models", "medical imaging deep learning", "multi-source multi-target domain adaptation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }