{ "id": "1904.01332", "version": "v1", "published": "2019-04-02T10:53:05.000Z", "updated": "2019-04-02T10:53:05.000Z", "title": "Endomorphism algebras of 2-row permutation modules over characteristic 3", "authors": [ "Jasdeep Kochhar" ], "comment": "23 pages", "categories": [ "math.RT" ], "abstract": "Given $r \\in \\mathbf{N},$ let $\\lambda$ be a partition of $r$ with at most two parts. Let $\\mathbf{F}$ be a field of characteristic 3. Write $M^\\lambda$ for the $\\mathbf{F}S_r$-permutation module corresponding to the action of the symmetric group $S_r$ on the cosets of the maximal Young subgroup $S_\\lambda.$ We construct a full set of central primitive idempotents in $\\text{End}_{\\mathbf{F} S_r}(M^\\lambda)$ in this case. We also determine the Young module corresponding to each primitive idempotent that we construct.", "revisions": [ { "version": "v1", "updated": "2019-04-02T10:53:05.000Z" } ], "analyses": { "subjects": [ "20C20", "20C32" ], "keywords": [ "endomorphism algebras", "characteristic", "maximal young subgroup", "young module", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }