{ "id": "1904.00437", "version": "v1", "published": "2019-03-31T15:45:09.000Z", "updated": "2019-03-31T15:45:09.000Z", "title": "Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation", "authors": [ "Haroune Houamed", "Pierre Dreyfuss" ], "categories": [ "math.AP" ], "abstract": "In this paper, for the 3-D Navier-Stokes-Boussinesq system with horizontal dissipation, where there is no smoothing effect on the vertical derivatives, we prove a uniqueness result of solutions $ (u,\\rho)\\in L^{\\infty}_T\\big( H^{0,s}\\times H^{0,1-s}\\big)$ with $ (\\nabla_h u,\\nabla_h\\rho)\\in L^{2}_T\\big( H^{0,s}\\times H^{0,1-s}\\big)$ and $s\\in [1/2,1]$. As a consequence, we improve the conditions stated in the paper \\cite{Miao} in order to obtain a global well-posedness result in the case of axisymmetric initial data.", "revisions": [ { "version": "v1", "updated": "2019-03-31T15:45:09.000Z" } ], "analyses": { "subjects": [ "76D03", "76D05", "35B33", "35Q35" ], "keywords": [ "horizontal dissipation", "uniqueness result", "navier-stokes-boussinesq equations", "global well-posedness result", "axisymmetric initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }