{ "id": "1903.12445", "version": "v1", "published": "2019-03-29T10:53:10.000Z", "updated": "2019-03-29T10:53:10.000Z", "title": "On asymptotic behaviour of Dirichlet inverse", "authors": [ "Falko Baustian", "Vladimir Bobkov" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "Let $f(n)$ be an arithmetic function with $f(1)\\neq0$ and let $f^{-1}(n)$ be its reciprocal with respect to the Dirichlet convolution. We study the asymptotic behaviour of $|f^{-1}(n)|$ with regard to the asymptotic behaviour of $|f(n)|$ assuming that the latter one grows or decays with at most polynomial or exponential speed. As a by-product, we obtain simple but constructive upper bounds for the number of ordered factorizations of $n$ into $k$ factors.", "revisions": [ { "version": "v1", "updated": "2019-03-29T10:53:10.000Z" } ], "analyses": { "subjects": [ "11A25", "11N37", "11N56" ], "keywords": [ "asymptotic behaviour", "dirichlet inverse", "arithmetic function", "dirichlet convolution", "constructive upper bounds" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }