{ "id": "1903.12093", "version": "v1", "published": "2019-03-28T16:15:28.000Z", "updated": "2019-03-28T16:15:28.000Z", "title": "On Hausdorff dimension of radial projections", "authors": [ "Bochen Liu" ], "comment": "10 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "For any $x\\in\\mathbb{R}^d$, $d\\geq 2$, denote $\\pi^x: \\mathbb{R}^d\\backslash\\{x\\}\\rightarrow S^{d-1}$ as the radial projection $$\\pi^x(y)=\\frac{y-x}{|y-x|}. $$ Given a Borel set $E\\subset{\\Bbb R}^d$, $\\dim_{\\mathcal{H}} E\\leq d-1$, in this paper we investigate for how many $x\\in \\mathbb{R}^d$ the radial projection $\\pi^x$ preserves the Hausdorff dimension of $E$, namely whether $\\dim_{\\mathcal{H}}\\pi^x(E)=\\dim_{\\mathcal{H}} E$. We develop a general framework to link $\\pi^x(E)$, $x\\in F$ and $\\pi^y(F)$, $y\\in E$, for any Borel set $F\\subset\\mathbb{R}^d$. In particular, whether $\\dim_{\\mathcal{H}}\\pi^x(E)=\\dim_{\\mathcal{H}}E$ for some $x\\in F$ can be reduced to whether $F$ is visible from some $y\\in E$ (i.e. $\\mathcal{H}^{d-1}(\\pi^y(F))>0$). This allows us to apply Orponen's estimate on visibility to obtain $$\\dim_{\\mathcal{H}}\\left\\{x\\in\\mathbb{R}^d: \\dim_{\\mathcal{H}}\\pi^x(E)<\\dim_{\\mathcal{H}}E\\right\\}\\leq 2(d-1)-\\dim_{\\mathcal{H}}E,$$ for any Borel set $E\\subset{\\Bbb R}^d$, $\\dim_{\\mathcal{H}} E\\in(d-2, d-1]$. This improves the Peres-Schlag bound when $\\dim_{\\mathcal{H}} E\\in(d-\\frac{3}{2}, d-1]$, and it is optimal at the endpoint $\\dim_{\\mathcal{H}} E=d-1$.", "revisions": [ { "version": "v1", "updated": "2019-03-28T16:15:28.000Z" } ], "analyses": { "keywords": [ "radial projection", "hausdorff dimension", "borel set", "general framework", "apply orponens estimate" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }