{ "id": "1903.11939", "version": "v1", "published": "2019-03-28T13:12:48.000Z", "updated": "2019-03-28T13:12:48.000Z", "title": "Time-fractional equations with reaction terms: fundamental solutions and asymptotics", "authors": [ "Serena Dipierro", "Benedetta Pellacci", "Enrico Valdinoci", "Gianmaria Verzini" ], "categories": [ "math.AP" ], "abstract": "We analyze the fundamental solution of a time-fractional problem, establishing existence and uniqueness in an appropriate functional space. We also focus on the one-dimensional spatial setting in the case in which the time-fractional exponent is equal to, or larger than, $\\frac12$. In this situation, we prove that the speed of invasion of the fundamental solution is at least `almost of square root type', namely it is larger than~$ct^\\beta$ for any given~$c>0$ and~$\\beta\\in\\left(0,\\frac12\\right)$.", "revisions": [ { "version": "v1", "updated": "2019-03-28T13:12:48.000Z" } ], "analyses": { "keywords": [ "fundamental solution", "time-fractional equations", "reaction terms", "asymptotics", "square root type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }