{ "id": "1903.11639", "version": "v1", "published": "2019-03-27T18:35:57.000Z", "updated": "2019-03-27T18:35:57.000Z", "title": "On BMO and Carleson measures on Riemannian manifolds", "authors": [ "Denis Brazke", "Armin Schikorra", "Yannick Sire" ], "categories": [ "math.AP", "math.FA" ], "abstract": "Let $\\mathcal{M}$ be a Riemannian manifold with a metric such that the manifold is Ahlfors-regular and the Ricci curvature is bounded from below. We also assume a bound on the gradient of the heat kernel. We characterize BMO-functions $u: \\mathcal{M} \\to \\mathbb{R}$ by a Carleson measure condition of their $\\sigma$-harmonic extension $U: \\mathcal{M} \\times (0,\\infty) \\to \\mathbb{R}$.", "revisions": [ { "version": "v1", "updated": "2019-03-27T18:35:57.000Z" } ], "analyses": { "keywords": [ "riemannian manifold", "carleson measure condition", "ricci curvature", "harmonic extension", "heat kernel" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }