{ "id": "1903.10476", "version": "v1", "published": "2019-03-25T17:23:03.000Z", "updated": "2019-03-25T17:23:03.000Z", "title": "Guessing models imply the singular cardinal hypothesis", "authors": [ "John Krueger" ], "categories": [ "math.LO" ], "abstract": "In this article we prove three main theorems: (1) guessing models are internally unbounded, (2) for any regular cardinal $\\kappa \\ge \\omega_2$, $\\textsf{ISP}(\\kappa)$ implies that $\\textsf{SCH}$ holds above $\\kappa$, and (3) forcing posets which have the $\\omega_1$-approximation property also have the countable covering property. These results solve open problems of Viale and Hachtman-Sinapova.", "revisions": [ { "version": "v1", "updated": "2019-03-25T17:23:03.000Z" } ], "analyses": { "subjects": [ "03E05" ], "keywords": [ "singular cardinal hypothesis", "guessing models", "regular cardinal", "main theorems", "approximation property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }