{ "id": "1903.09228", "version": "v1", "published": "2019-03-21T20:27:04.000Z", "updated": "2019-03-21T20:27:04.000Z", "title": "Bernoulli and Euler numbers from divergent series", "authors": [ "Sergio A. Carrillo" ], "categories": [ "math.CA" ], "abstract": "The aim of this note is to provide a simple proof of some well-known identities and recurrences relating classical Bernoulli and Euler numbers by using the Abel sum of the divergent series $\\sum_{n=0}^\\infty (-1)^{n} (n+1)^k$, $k$ a positive integers. Special attention is placed on the fact that the numerical value of these sums is determined by the linearity of the summation method involved.", "revisions": [ { "version": "v1", "updated": "2019-03-21T20:27:04.000Z" } ], "analyses": { "subjects": [ "11B68", "40G10" ], "keywords": [ "divergent series", "euler numbers", "summation method", "recurrences relating classical bernoulli", "simple proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }