{ "id": "1903.08266", "version": "v1", "published": "2019-03-19T21:43:33.000Z", "updated": "2019-03-19T21:43:33.000Z", "title": "Caps and progression-free sets in $\\mathbb{Z}_m^n$", "authors": [ "Christian Elsholtz", "Péter Pál Pach" ], "categories": [ "math.CO", "math.NT" ], "abstract": "We study progression-free sets in the abelian groups $G=(\\mathbb{Z}_m^n,+)$. Let $r_k(\\mathbb{Z}_m^n)$ denote the maximal size of a set $S \\subset \\mathbb{Z}_m^n$ that does not contain a proper arithmetic progression of length $k$. We give lower bound constructions, which e.g. include that $r_3(\\mathbb{Z}_m^n) \\geq C_m \\frac{((m+2)/2)^n}{\\sqrt{n}}$, when $m$ is even. When $m=4$ this is of order at least $3^n/\\sqrt{n}\\gg \\vert G \\vert^{0.7924}$. Moreover, if the progression-free set $S\\subset \\mathbb{Z}_4^n$ satisfies a technical condition, which dominates the problem at least in low dimension, then $|S|\\leq 3^n$ holds. We present a number of new methods which cover lower bounds for several infinite families of parameters $m,k,n$, which includes for example: $r_6(\\mathbb{Z}_{125}^n) \\geq (85-o(1))^n$. For $r_3(\\mathbb{Z}_4^n)$ we determine the exact values, when $n \\leq 5$, e.g. $r_3(\\mathbb{Z}_4^5)=124$, and for $r_4(\\mathbb{Z}_4^n)$ we determine the exact values, when $n \\leq 4$, e.g. $r_4(\\mathbb{Z}_4^4)=128$.", "revisions": [ { "version": "v1", "updated": "2019-03-19T21:43:33.000Z" } ], "analyses": { "keywords": [ "exact values", "study progression-free sets", "cover lower bounds", "proper arithmetic progression", "lower bound constructions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }