{ "id": "1903.07699", "version": "v1", "published": "2019-03-18T20:11:15.000Z", "updated": "2019-03-18T20:11:15.000Z", "title": "When is the automorphism group of an affine variety nested?", "authors": [ "Alexander Perepechko", "Andriy Regeta" ], "comment": "9 pages", "categories": [ "math.AG" ], "abstract": "For an affine algebraic variety $X$, we study the subgroup $\\mathrm{Aut}_{\\text{alg}}(X)$ of the group of regular automorphisms $\\mathrm{Aut}(X)$ of $X$ generated by all the connected algebraic subgroups. We prove that $\\mathrm{Aut}_{\\text{alg}}(X)$ is nested, i.e., is a direct limit of algebraic subgroups of $\\mathrm{Aut}(X)$, if and only if all the $\\mathbb{G}_a$-actions on $X$ commute. Moreover, we describe the structure of such a group $\\mathrm{Aut}_{\\text{alg}}(X)$.", "revisions": [ { "version": "v1", "updated": "2019-03-18T20:11:15.000Z" } ], "analyses": { "subjects": [ "14R05", "14R20", "14R25" ], "keywords": [ "affine variety", "automorphism group", "affine algebraic variety", "regular automorphisms", "connected algebraic subgroups" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }