{ "id": "1903.07635", "version": "v1", "published": "2019-03-18T18:00:59.000Z", "updated": "2019-03-18T18:00:59.000Z", "title": "Counting closed geodesics in a compact rank one locally CAT(0) space", "authors": [ "Russell Ricks" ], "comment": "23 pages", "categories": [ "math.DS", "math.GT" ], "abstract": "Let $X$ be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank one axis. Assume $X$ is not homothetic to a metric graph with integer edge lengths. Let $P_t$ be the number of parallel classes of oriented closed geodesics of length $\\le t$; then $\\lim\\limits_{t \\to \\infty} P_t / \\frac{e^{ht}}{ht} = 1$, where $h$ is the entropy of the geodesic flow on the space $SX$ of parametrized unit-speed geodesics in $X$.", "revisions": [ { "version": "v1", "updated": "2019-03-18T18:00:59.000Z" } ], "analyses": { "keywords": [ "counting closed geodesics", "locally cat", "compact rank", "universal cover admits", "integer edge lengths" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }