{ "id": "1903.06941", "version": "v1", "published": "2019-03-16T15:14:30.000Z", "updated": "2019-03-16T15:14:30.000Z", "title": "Classic and exotic Besov spaces induced by good grids", "authors": [ "Daniel Smania" ], "comment": "33 pages, 1 figure", "categories": [ "math.CA", "math.AP", "math.DS", "math.FA" ], "abstract": "In a previous work we introduced Besov spaces $\\mathcal{B}^s_{p,q}$ defined on a measure spaces with a good grid, with $p\\in [1,\\infty)$, $q\\in [1,\\infty]$ and $0< s< 1/p$. Here we show that classical Besov spaces on compact homogeneous spaces are examples of such Besov spaces. On the other hand we show that even Besov spaces defined by a good grid made of partitions by intervals may differ from a classical Besov space, giving birth to exotic Besov spaces.", "revisions": [ { "version": "v1", "updated": "2019-03-16T15:14:30.000Z" } ], "analyses": { "subjects": [ "37C30", "30H25", "42B35", "42C15", "42C40" ], "keywords": [ "exotic besov spaces", "classical besov space", "compact homogeneous spaces", "measure spaces", "partitions" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }