{ "id": "1903.06882", "version": "v1", "published": "2019-03-16T05:29:30.000Z", "updated": "2019-03-16T05:29:30.000Z", "title": "Classification of irreducible modules over gap-$p$ Virasoro algebras", "authors": [ "Chengkang Xu" ], "categories": [ "math.RT" ], "abstract": "We prove that any irreducible Harish-Chandra modules for a class of Lie algebras, which we call gap-$p$ Virasoro algebras, must be a highest weight module, a lowest weight module, or a module of intermediate series.These algebras are closely related to the Heisenberg-Virasoro algebra and the algebra of derivations over a quantum torus. They also contain subalgebras which are isomorphic to the Virasoro algebra $Vir$, but graded by $p\\mathbb Z$(unlike $Vir$ by $\\mathbb Z$).", "revisions": [ { "version": "v1", "updated": "2019-03-16T05:29:30.000Z" } ], "analyses": { "keywords": [ "irreducible modules", "classification", "highest weight module", "lowest weight module", "intermediate series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }