{ "id": "1903.06589", "version": "v1", "published": "2019-03-15T15:09:17.000Z", "updated": "2019-03-15T15:09:17.000Z", "title": "New combinatorial interpretation of the binomial coefficients", "authors": [ "Paul M. Rakotomamonjy", "Sandrataniaina R. Andriantsoa" ], "comment": "12 pages, 2 figures and 1 table", "categories": [ "math.CO" ], "abstract": "Using generating functions and some trivial bijections, we show in this paper that the binomial coefficients count the set of (123,132) and (123,213)-avoiding permutations according to the number of crossings. We also define a q-tableau of power of two and prove that it counts the set of (213,312) and (132,312)-avoiding permutations according to the number of crossings.", "revisions": [ { "version": "v1", "updated": "2019-03-15T15:09:17.000Z" } ], "analyses": { "subjects": [ "05A20", "05A05" ], "keywords": [ "combinatorial interpretation", "binomial coefficients count", "trivial bijections", "permutations", "generating functions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }