{ "id": "1903.06377", "version": "v1", "published": "2019-03-15T06:10:05.000Z", "updated": "2019-03-15T06:10:05.000Z", "title": "The Hilbert scheme of a pair of linear spaces", "authors": [ "Ritvik Ramkumar" ], "comment": "32 pages, 1 figure; comments are always welcome!", "categories": [ "math.AG", "math.AC" ], "abstract": "Let $H(c,d,n)$ be the component of the Hilbert scheme whose general point parameterizes a $c$-plane union a $d$-plane in $\\mathbf{P}^n$. We show that $H(c,d,n)$ is non-singular and isomorphic to successive blow ups of $\\mathbf{G}(c,n) \\times \\mathbf{G}(d,n)$ or $\\text{Sym}^{2}\\mathbf{G}(d,n)$. We also show that $H(c,d,n)$ has exactly one borel fixed point, describe the finitely many orbits under the $\\text{PGL}_n$ action and describe the effective and ample cones. Using this, we prove that $H(n-3,n-3,n)$ and $H(1,n-2,n)$ are Mori dream spaces. In the case of $H(1,n-2,n)$, we show that the full Hilbert scheme contains only one more component and we give a complete description of its singularities. We end by describing the singularities of some Hilbert schemes parameterizing more than two linear spaces.", "revisions": [ { "version": "v1", "updated": "2019-03-15T06:10:05.000Z" } ], "analyses": { "subjects": [ "13D02", "13D10", "14D22", "14E05", "14E30", "14M15" ], "keywords": [ "linear spaces", "full hilbert scheme contains", "mori dream spaces", "general point parameterizes", "complete description" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }