{ "id": "1903.06065", "version": "v1", "published": "2019-03-14T15:12:42.000Z", "updated": "2019-03-14T15:12:42.000Z", "title": "Splitting of the homology of the punctured mapping class group", "authors": [ "Andrea Bianchi" ], "comment": "30 pages, 16 figures", "categories": [ "math.AT" ], "abstract": "Let $\\Gamma_{g,1}^m$ be the mapping class group of the orientable surface $\\Sigma_{g,1}^m$ of genus $g$ with one parametrised boundary curve and $m$ permutable punctures; when $m=0$ we omit it from the notation. Let $\\beta_{m}(\\Sigma_{g,1})$ be the braid group on $m$ strands of the surface $\\Sigma_{g,1}$. We prove that $H_*(\\Gamma_{g,1}^m;\\mathbb{Z}_2)\\cong H_*(\\Gamma_{g,1};H_*(\\beta_{m}(\\Sigma_{g,1});\\mathbb{Z}_2))$. The main ingredient is the computation of $H_*(\\beta_{m}(\\Sigma_{g,1});\\mathbb{Z}_2)$ as a symplectic representation of $\\Gamma_{g,1}$.", "revisions": [ { "version": "v1", "updated": "2019-03-14T15:12:42.000Z" } ], "analyses": { "subjects": [ "20F36", "55N25", "55R20", "55R35", "55R40", "55R80", "55T10" ], "keywords": [ "punctured mapping class group", "parametrised boundary curve", "braid group", "main ingredient", "symplectic representation" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }