{ "id": "1903.05060", "version": "v1", "published": "2019-03-12T17:09:37.000Z", "updated": "2019-03-12T17:09:37.000Z", "title": "The colored Jones polynomial and Kontsevich-Zagier series for double twist knots, II", "authors": [ "Jeremy Lovejoy", "Robert Osburn" ], "comment": "30 pages", "categories": [ "math.GT", "math.CO", "math.NT", "math.QA" ], "abstract": "Let $K_{(m,p)}$ denote the family of double twist knots where $2m-1$ and $2p$ are non-zero integers denoting the number of half-twists in each region. Using a result of Takata, we prove a formula for the colored Jones polynomial of $K_{(-m,-p)}$ and $K_{(-m,p)}$. The latter case leads to new families of $q$-hypergeometric series generalizing the Kontsevich-Zagier series. We also use Bailey pairs and formulas of Walsh to find cyclotomic-like expansions for the colored Jones polynomials of $K_{(m,p)}$ and $K_{(m,-p)}$.", "revisions": [ { "version": "v1", "updated": "2019-03-12T17:09:37.000Z" } ], "analyses": { "subjects": [ "33D15", "57M27" ], "keywords": [ "colored jones polynomial", "double twist knots", "kontsevich-zagier series", "non-zero integers", "hypergeometric series" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }