{ "id": "1903.04828", "version": "v1", "published": "2019-03-12T10:38:13.000Z", "updated": "2019-03-12T10:38:13.000Z", "title": "Volume versus rank of lattices in Lie groups", "authors": [ "Tsachik Gelander", "Raz Slutsky" ], "categories": [ "math.GR", "math.GT" ], "abstract": "We prove that the rank (that is, the minimal size of a generating set) of lattices in a general connected Lie group is bounded by the co-volume of the projection of the lattice to the semi-simple part of the group. This is a generalization of a result by Gelander for semi-simple Lie groups and a result of Mostow for solvable Lie groups.", "revisions": [ { "version": "v1", "updated": "2019-03-12T10:38:13.000Z" } ], "analyses": { "subjects": [ "22E40" ], "keywords": [ "semi-simple lie groups", "general connected lie group", "solvable lie groups", "semi-simple part", "projection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }