{ "id": "1903.04663", "version": "v1", "published": "2019-03-11T23:57:42.000Z", "updated": "2019-03-11T23:57:42.000Z", "title": "Calibrating dependence between random elements", "authors": [ "Abram M. Kagan", "Gabor J. Székely" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "Attempts to quantify dependence between random elements X and Y via maximal correlation go back to Gebelein (1941) and R\\'{e}nyi (1959). After summarizing properties (including some new) of the R\\'{e}nyi measure of dependence, a calibrated scale of dependence is introduced. It is based on the ``complexity`` of approximating functions of X by functions of Y.", "revisions": [ { "version": "v1", "updated": "2019-03-11T23:57:42.000Z" } ], "analyses": { "subjects": [ "60H99", "62E10" ], "keywords": [ "random elements", "calibrating dependence", "maximal correlation", "summarizing properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }