{ "id": "1903.04625", "version": "v1", "published": "2019-03-11T21:53:44.000Z", "updated": "2019-03-11T21:53:44.000Z", "title": "Finite semantics for fragments of intuitionistic logic", "authors": [ "Felipe S. Albarelli", "Rodolfo Ertola-Biraben" ], "categories": [ "math.LO" ], "abstract": "In 1932, G\\\"odel proved that there is no finite semantics for intuitionistic logic. We consider all fragments of intuitionistic logic and check in each case whether a finite semantics exists. We may fulfill a didactic goal, as little logic and algebra are presupposed.", "revisions": [ { "version": "v1", "updated": "2019-03-11T21:53:44.000Z" } ], "analyses": { "keywords": [ "intuitionistic logic", "finite semantics", "didactic goal", "little logic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }