{ "id": "1903.04390", "version": "v1", "published": "2019-03-11T15:56:23.000Z", "updated": "2019-03-11T15:56:23.000Z", "title": "Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below, II", "authors": [ "Gang Liu", "Gábor Székelyhidi" ], "comment": "18 pages", "categories": [ "math.DG", "math.CV" ], "abstract": "We study non-collapsed Gromov-Hausdorff limits of K\\\"ahler manifolds with Ricci curvature bounded below. Our main result is that each tangent cone is homeomorphic to a normal affine variety. This extends a result of Donaldson-Sun, who considered non-collapsed limits of polarized K\\\"ahler manifolds with two-sided Ricci curvature bounds.", "revisions": [ { "version": "v1", "updated": "2019-03-11T15:56:23.000Z" } ], "analyses": { "keywords": [ "kähler manifolds", "study non-collapsed gromov-hausdorff limits", "two-sided ricci curvature bounds", "normal affine variety", "main result" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }