{ "id": "1903.03917", "version": "v1", "published": "2019-03-10T03:59:44.000Z", "updated": "2019-03-10T03:59:44.000Z", "title": "Iterates of Conditional Expectations: Convergence and Divergence", "authors": [ "Guolie Lan", "Ze-Chun Hu", "Wei Sun" ], "categories": [ "math.PR" ], "abstract": "In this paper, we investigate the convergence and divergence of iterates of conditional expectation operators. We show that if $(\\Omega,\\cal{F},P)$ is a non-atomic probability space, then divergent iterates of conditional expectations involving 3 or 4 sub-$\\sigma$-fields of $\\cal{F}$ can be constructed for a large class of random variables in $L^2(\\Omega,\\cal{F},P)$. This settles in the negative a long-open conjecture. On the other hand, we show that if $(\\Omega,\\cal{F},P)$ is a purely atomic probability space, then iterates of conditional expectations involving any finite set of sub-$\\sigma$-fields of $\\cal{F}$ must converge for all random variables in $L^1(\\Omega,\\cal{F},P)$.", "revisions": [ { "version": "v1", "updated": "2019-03-10T03:59:44.000Z" } ], "analyses": { "subjects": [ "60A05", "60F15", "60F25" ], "keywords": [ "divergence", "convergence", "random variables", "non-atomic probability space", "purely atomic probability space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }