{ "id": "1903.03833", "version": "v1", "published": "2019-03-09T17:40:38.000Z", "updated": "2019-03-09T17:40:38.000Z", "title": "A Regularity Criterion for Solutions to the 3D NSE in `Dynamically Restricted' Local Morrey Spaces", "authors": [ "Zoran Grujic", "Liaosha Xu" ], "categories": [ "math.AP" ], "abstract": "It is shown that a local-in-time strong solution $u$ to the 3D Navier-Stokes equations remains regular on an interval $(0,T)$ provided a smallness $\\epsilon_0$-condition on $u$ in a lower time-restricted local Morrey space is stipulated; more precisely, $$\\sup_{t\\in(0,T)} \\ \\sup_{x \\in \\mathbb{R}^3, \\ \\eta(t) \\le r \\le 1} \\ \\frac{1}{r^\\alpha} \\int_{B_r(x)} |u(y,t)|^p dy \\le \\epsilon_0$$ where $\\eta$ is a dynamic dissipation scale consistent with the turbulence phenomenology and $\\alpha$ and $p$ are suitable parameters. Such regularity criterion guarantees the volumetric sparseness of local spatial structure of intense vorticity components, preventing the formation of the finite-time blow up at $T$ under the framework of $Z_\\alpha$-sparseness classes introduced in [Bradshaw, Farhat and Grujic, ARMA, 2018].", "revisions": [ { "version": "v1", "updated": "2019-03-09T17:40:38.000Z" } ], "analyses": { "keywords": [ "regularity criterion", "3d nse", "3d navier-stokes equations remains regular", "lower time-restricted local morrey space", "dynamic dissipation scale consistent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }