{ "id": "1903.03458", "version": "v1", "published": "2019-03-08T16:07:14.000Z", "updated": "2019-03-08T16:07:14.000Z", "title": "Test vectors for Rankin-Selberg $L$-functions", "authors": [ "Andrew R. Booker", "M. Krishnamurthy", "Min Lee" ], "comment": "arXiv admin note: text overlap with arXiv:1804.07721", "categories": [ "math.NT", "math.RT" ], "abstract": "We study the local zeta integrals attached to a pair of generic representations $(\\pi,\\tau)$ of $GL_n\\times GL_m$, $n>m$, over a $p$-adic field. Through a process of unipotent averaging we produce a pair of corresponding Whittaker functions whose zeta integral is non-zero, and we express this integral in terms of the Langlands parameters of $\\pi$ and $\\tau$. In many cases, these Whittaker functions also serve as a test vector for the associated Rankin-Selberg (local) $L$-function.", "revisions": [ { "version": "v1", "updated": "2019-03-08T16:07:14.000Z" } ], "analyses": { "subjects": [ "11F70", "11F66" ], "keywords": [ "test vector", "rankin-selberg", "local zeta integrals", "generic representations", "adic field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }