{ "id": "1903.03170", "version": "v1", "published": "2019-03-07T20:21:08.000Z", "updated": "2019-03-07T20:21:08.000Z", "title": "Finite powers and products of Menger sets", "authors": [ "Piotr Szewczak", "Boaz Tsaban", "Lyubomyr Zdomskyy" ], "comment": "14 pages", "categories": [ "math.GN", "math.LO" ], "abstract": "We construct, using mild combinatorial hypotheses, a real Menger set that is not Scheepers, and two real sets that are Menger in all finite powers, with a non-Menger product. By a forcing-theoretic argument, we show that the same holds in the Blass--Shelah model for arbitrary values of the ultrafilter and dominating number.", "revisions": [ { "version": "v1", "updated": "2019-03-07T20:21:08.000Z" } ], "analyses": { "subjects": [ "54D20", "03E17" ], "keywords": [ "finite powers", "mild combinatorial hypotheses", "real menger set", "arbitrary values", "blass-shelah model" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }