{ "id": "1903.02626", "version": "v1", "published": "2019-03-06T21:55:14.000Z", "updated": "2019-03-06T21:55:14.000Z", "title": "Gauge modules for the Lie algebras of vector fields on affine varieties", "authors": [ "Yuly Billig", "Jonathan Nilsson", "André Zaidan" ], "categories": [ "math.RT" ], "abstract": "For a smooth irreducible affine algebraic variety we study a class of gauge modules admitting compatible actions of both the algebra $A$ of functions and the Lie algebra $\\mathcal{V}$ of vector fields on the variety. We prove that a gauge module corresponding to a simple $\\mathfrak{gl}_N$-module is irreducible as a module over the Lie algebra of vector fields unless it appears in the de Rham complex.", "revisions": [ { "version": "v1", "updated": "2019-03-06T21:55:14.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "lie algebra", "vector fields", "affine varieties", "smooth irreducible affine algebraic variety", "gauge modules admitting compatible actions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }