{ "id": "1903.01621", "version": "v1", "published": "2019-03-05T01:29:26.000Z", "updated": "2019-03-05T01:29:26.000Z", "title": "Initial boundary value problem for nonlinear Dirac equation of Gross-Neveu type in $1+1$ dimensions", "authors": [ "Yongqian Zhang", "Qin Zhao" ], "comment": "27 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "This paper studies an initial boundary value problem for a class of nonlinear Dirac equations with cubic terms and moving boundary. For the initial data with bounded $L^2$ norm and the suitable boundary conditions, the global existence and the uniqueness of the strong solution are proved.", "revisions": [ { "version": "v1", "updated": "2019-03-05T01:29:26.000Z" } ], "analyses": { "subjects": [ "35Q41", "35L60", "35Q40" ], "keywords": [ "initial boundary value problem", "nonlinear dirac equation", "gross-neveu type", "dimensions", "strong solution" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }