{ "id": "1903.00522", "version": "v1", "published": "2019-03-01T20:17:19.000Z", "updated": "2019-03-01T20:17:19.000Z", "title": "Further common local spectral properties for bounded linear operators", "authors": [ "Hassane Zguitti" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "In this note, we study common local spectral properties for bounded linear operators $A\\in\\mathcal{L}(X,Y)$ and $B,C\\in\\mathcal{L}(Y,X)$ such that $$A(BA)^2=ABACA=ACABA=(AC)^2A.$$ We prove that $AC$ and $BA$ share the single valued extension property, the Bishop property $(\\beta)$, the property $(\\beta_{\\epsilon})$, the decomposition property $(\\delta)$ and decomposability. Closedness of analytic core and quasinilpotent part are also investigated. Some applications to Fredholm operators are given.", "revisions": [ { "version": "v1", "updated": "2019-03-01T20:17:19.000Z" } ], "analyses": { "subjects": [ "47A10", "47A11", "47A53", "47A55" ], "keywords": [ "bounded linear operators", "study common local spectral properties", "single valued extension property", "analytic core", "decomposition property" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }