{ "id": "1903.00407", "version": "v1", "published": "2019-03-01T16:57:50.000Z", "updated": "2019-03-01T16:57:50.000Z", "title": "On Cayley representations of finite graphs over abelian p-groups", "authors": [ "Grigory Ryabov" ], "comment": "21 pages", "categories": [ "math.CO" ], "abstract": "We construct a polynomial-time algorithm which given a graph $\\Gamma$ finds the full set of non-equivalent Cayley representations of $\\Gamma$ over the group $D\\cong C_p\\times C_{p^k}$, where $p\\in\\{2,3\\}$ and $k\\geq 1$. This result implies that the recognition and the isomorphism problems for Cayley graphs over $D$ can be solved in polynomial time.", "revisions": [ { "version": "v1", "updated": "2019-03-01T16:57:50.000Z" } ], "analyses": { "keywords": [ "finite graphs", "abelian p-groups", "non-equivalent cayley representations", "polynomial time", "polynomial-time algorithm" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }