{ "id": "1903.00062", "version": "v1", "published": "2019-02-28T20:38:24.000Z", "updated": "2019-02-28T20:38:24.000Z", "title": "Equidistribution of critical points of the multipliers in the quadratic family", "authors": [ "Tanya Firsova", "Igors Gorbovickis" ], "categories": [ "math.DS" ], "abstract": "A parameter $c_0\\in\\mathbb C$ in the family of quadratic polynomials $f_c(z)=z^2+c$ is a critical point of a period $n$ multiplier, if the map $f_{c_0}$ has a periodic orbit of period $n$, whose multiplier, viewed as a locally analytic function of $c$, has a vanishing derivative at $c=c_0$. We prove that all critical points of period $n$ multipliers equidistribute on the boundary of the Mandelbrot set, as $n\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2019-02-28T20:38:24.000Z" } ], "analyses": { "keywords": [ "critical point", "quadratic family", "equidistribution", "quadratic polynomials", "periodic orbit" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }