{ "id": "1902.10706", "version": "v1", "published": "2019-02-27T13:18:06.000Z", "updated": "2019-02-27T13:18:06.000Z", "title": "Gallai-Ramsey numbers for fans", "authors": [ "Yaping Mao", "Zhao Wang", "Colton Magnant", "Ingo Schiermeyer" ], "comment": "arXiv admin note: text overlap with arXiv:1809.10298", "categories": [ "math.CO" ], "abstract": "Given a graph $G$ and a positive integer $k$, define the \\emph{Gallai-Ramsey number} to be the minimum number of vertices $n$ such that any $k$-edge coloring of $K_n$ contains either a rainbow (all different colored) triangle or a monochromatic copy of $G$. In this paper, we obtain general upper and lower bounds on the Gallai-Ramsey numbers for fans $F_{m} = K_{1} + mK_{2}$ and prove the sharp result for $m = 2$ and for $m = 3$ with $k$ even.", "revisions": [ { "version": "v1", "updated": "2019-02-27T13:18:06.000Z" } ], "analyses": { "subjects": [ "05C55" ], "keywords": [ "gallai-ramsey numbers", "minimum number", "monochromatic copy", "general upper", "lower bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }