{ "id": "1902.09224", "version": "v1", "published": "2019-02-25T12:22:24.000Z", "updated": "2019-02-25T12:22:24.000Z", "title": "On the number of distinct exponents in the prime factorization of an integer", "authors": [ "Carlo Sanna" ], "categories": [ "math.NT" ], "abstract": "Let $f(n)$ be the number of distinct exponents in the prime factorization of the natural number $n$. We prove some results about the distribution of $f(n)$. In particular, for any positive integer $k$, we obtain that $$ \\#\\{n \\leq x : f(n) = k\\} \\sim A_k x $$ and $$ \\#\\{n \\leq x : f(n) = \\omega(n) - k\\} \\sim \\frac{B x (\\log \\log x)^k}{k! \\log x} , $$ as $x \\to +\\infty$, where $\\omega(n)$ is the number of prime factors of $n$ and $A_k, B > 0$ are some explicit constants. The latter asymptotic extends a result of Akta\\c{s} and Ram Murty about numbers having mutually distinct exponents in their prime factorization.", "revisions": [ { "version": "v1", "updated": "2019-02-25T12:22:24.000Z" } ], "analyses": { "subjects": [ "11N25", "11N37", "11N64" ], "keywords": [ "prime factorization", "ram murty", "natural number", "asymptotic extends", "prime factors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }